Estimating PV models using multi-group salp swarm algorithm

نویسندگان

چکیده

<span id="docs-internal-guid-ea798321-7fff-3e0c-24d7-776c9b1165b3"><span>In this paper, a multi-group salp swarm algorithm (MGSSA) is presented for estimating the photovoltaic (PV) solar cell models. The SSA metaheuristic technique that mimics social behavior of salp. salps work in group follow certain leader. leader approaches food source and rest follows it, hence resulting slow convergence toward solution. For several groups, searching mechanism going to be improved. In work, recently developed based on groups implemented estimate single-, double-, triple-, Quadruple-, Quintuple-diode models PV cell. Six versions MGSSA algorithms are with different chain numbers; one, two, four, six, eight half number salps. results compared regular particle optimization (PSO) some its newly forms. show has faster rate, shorter settling time than SSA. Similar inspired actual chain, most important member chain; less significant effect algorithm. Therefore, it highly recommended increase leaders reduce length. Increasing (number groups) can root mean squared error (RMSE) maximum absolute (MAE) by 50% value.</span></span>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal design of squirrel cage induction motor using multi-objective Salp Swarm Algorithm

The design of three-phase induction motors is a challenge in electrical engineering. Therefore, new design techniques are continuously provided. Since the design of the induction motors is carried out for different purposes, it is difficult to find a method that can addresses all the targets. Nowadays, the normal methods used to solve multi-objective problems are the optimization strategies. In...

متن کامل

Selective Harmonics Elimination Technique in Cascaded H-Bridge Multi-Level Inverters Using the Salp Swarm Optimization Algorithm

A new optimization method is proposed in this paper for finding the firing angles in multi-level voltage source inverters to eliminate low-order selective harmonics and reduce total harmonic distortion (THD) value of the output voltage. For thid end, Fourier series is used for calculating objective function and selecting specific harmonics. Regarding the nature and complexity of the employed no...

متن کامل

Control Stability Evaluation of Multiple Distribution Static Compensators based on Optimal Coefficients using Salp Swarm Algorithm

In order to solve the problem of voltage drop and voltage imbalance in the distribution systems, the injection of reactive power by multiple static compensators is used. The distributed generation such as photovoltaic systems could play a role of the static compensators by producing reactive power. In this paper, the integral to droop line algorithm is used to control the reactive power in busb...

متن کامل

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

Multi-Search Sub-Swarm-Based Optimization Using Genetic Algorithm

Particle swarm optimization is affected by premature convergence, no guarantee in finding optimal solution, lack of solution amongst other issues. This paper reviews many literature on PSO and proposes a Hybrid MultiSearch Sub-Swarm PSO by using multiple sub swarm PSO in combination with multi search space algorithm. The particles are divided into equal parts and deployed into the number of sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IAES International Journal of Artificial Intelligence

سال: 2021

ISSN: ['2089-4872', '2252-8938']

DOI: https://doi.org/10.11591/ijai.v10.i2.pp398-406